Separations of Lutidines, Collidines and 2, 3-Cyclopentenopyridines from Coal Tar Bases

By Hajime Suzumura

(Received April 10, 1961)

In order to examine the tertiary amines in coal tar bases, especially in a forerunning of quinoline, methods of picrate and urea adduct formation, countercurrent extraction and chromatography were applied in order to effect the isolation of the bases. Selective separations could be carried out easily for some of the high boiling bases. From a fraction boiling at 170°C, 3,5-lutidine¹⁾ (I) was separated relatively easily as a zinc chloride adduct, and 2, 3disubstituted pyridines such as 2, 3, 6-collidine¹⁾ (II), 2, 3, 4, 6-tetramethylpyridine^{2,3)} (III), 2, 3cyclopentenopyridine²⁾ (IV) and 2, 3-cyclopenteno-6-methylpyridine³⁻⁵ (V) were isolated as

urea adducts from the fractions with corresponding boiling points. Furthermore, using a chromatographic column of cupric chloridealuminum oxide which was effective for separations of pyridine, picolines and lutidines^{6,7)}

2, 3-cyclopenteno-6-methylpyridine and 3, 4, 5collidine^{4,8-10} (VI) were separated. The latter was isolated for the first time from coal tar bases by the author83. With the same chromatographic column, 2, 3, 5-collidine¹⁰⁾ (VII) could also be separated and purified.

The properties and physical constants of the bases which were separated are shown in the following tables.

Experimental

Materials.—The materials used in the present investigation were all supplied by Yawata Chemical Industry Co.; their properties are shown below.

TABLE I. 3,5-LUTIDINE

	B. p. °C	d_4^{25}	M. p. of B(HgCl2)2HCl °C	
Isolated	171~172	0.9390	169~170	244~244.5
Reported	D 171	0.9385	170	240

TABLE II. 2,3,6-COLLIDINE

	B. p. °C	M. p. of picrate	n_{D}^{25}
Isolated	171~171.5	147.4~148.4	1.5020
Reported1)	(uncorr.)	148	

TABLE III. 2,3,4,6-TETRAMETHYLPYRIDINE

	B . p.	$n_{ m D}^{25}$	N	M. p. of picrate	M. p. of picrolonate	Ultraviolet spectrum in cyclohexane
	°C		%	°C	°C	λ_{\max} ε_{\max}
	C		70	Č	C	mμ
Isolated	202.5	1.5088	10.35	$122 \sim 122.5$	$226.4 \sim 226.9$	266 3294
Reported2)	203.3	1.5087	(10.37)*	122.5~123	225.5	266.5 3210
reported	200.0	1.5007	(10.51)	122.5	220.0	200.5 5210

Calcd.

¹⁾ T. Eguchi, This Bulletin, 3, 227 (1928).

²⁾ P. Arnall, J. Chem. Soc., 1954, 4040.

³⁾ S. Jifuku, S. Nakayama, H. Suzumura and M. Uemura, J. Japan Tar Ind. Association, 10, 126 (1958).

⁴⁾ P. Arnall, J. Chem. Soc., 1958, 1202.

⁵⁾ S. Tanaka et al., Japan Analyst (Bunseki Kagaku), 6, 281 (1957).

⁶⁾ R. Vignes et al., Compt. rend., 232, 1419 (1951).

⁷⁾ E. Funakubo, J. Chem. Soc. Japan, Ind. Chem. Sec. (Kogyo Kagaku Zasshi), 59, 220 (1956).

⁸⁾ Annual Meeting of Japan Tar Industry Association, October, 1956.

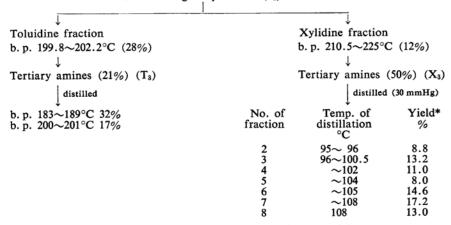
A. S. Bailey et al., J. Chem. Soc., 1959, 2554.
 K. Tsuda et al., Pharm. Bull., 1, 283 (1953).

TABLE IV. 2,3-CYCLOPENTENOPYRIDINE

	В. р. °С	n_{D}^{25}	M. p. of picrate °C	M. p. of picrolonate °C	Ultraviolet λ_{\max} $m\mu$	spectrum ε _{max}
Isolated	199.5	1.538	183.5~184	238.8	272	4090
Reported ²⁾	$199.3 \sim 199.4$	1.541	182~183	239		

TABLE V. 2,3-CYCLOPENTENO-6-METHYLPYRIDINE

	B. p. °C	F. p. °C	n_{D}	M. p. of picrate °C	M. p. of picrolonate °C
Isolated Reported ⁴⁾ Reported ⁵⁾	210.5~211 211.9(761mmHg)	35.0~35.7 31.8 35.0	1.527 (40°C) 1.5297(32.5°C)	152.1~152.6 155 152.8~153.1	205.5~206.5 170


TABLE VI. 3,4,5-COLLIDINE

	B. p. °C	М. р. °С	d_4^{t}	n_{D}	M. p. of picrate °C	M. p. of picrolonate °C	N %
Isolated	210.3~210.8	32.6~35.6	0.955 (35°C)	1.5115 (35°C)	173.6~174.3	224	11.25
Reported4)	211.4~211.5 (759 mmHg)	36.8	0.947 (40°/20°C)	1.5132 (37°C)	178	232	
Reported ⁹⁾	_	_	_		174~175	228	
Reported ¹⁰⁾	205~207	10~13	0.9616 (15°C)	1.5103 (15°C)	174	188	Calcd. 11.52

TABLE VII. 2,3,5-COLLIDINE

	${}^{\mathbf{B.}}_{\circ}\mathbf{p.}$	n_{D}^{25}	M. p. of chloroplatinate °C	M. p. of picrate °C
Isolated	185~185.8	1.5045	211	184.5~185.2
Reported10)	186.8	1.5057	212	184

TABLE VIII Forerunning of quinoline (S₁)

^{*} The yield in each step is based on an immediately preceding material.

TABLE IX. 2,3-CYCLOPENTENO-6-METHYLPYRIDINE

	Urea adduct		Base recovered	Picrate		
No. of fraction	Amount	M. p.	from urea adduct	Amount	M. p. °C	
	g.	°C	g.	g.	°C	
7	_	86~129	1.4	0.35	$149 \sim 150.5$	
8	2.4	88~129	1.3	0.80	150~150.5	
9	2.6	88~129	1.3	0.90	150~150.5	

TADIE	v	3 4 5-COLLIDINE	AND 2,3-CYCLOPENTENO-6-METHYLPYRIDIN	JE
LABLE	А.	5.4.5-COLLIDINE	AND 2.3-CYCLOPENTENU-0-METHYLPYKIDIN	4E

TABLE 71. 5, 1,5-COLLIDING AND 2,5 CTCDOLLITERO CHILDREN							
No. of band	1	2	3	4	5	6	7
Base recovered							
from each band, g.	0.25	0.25	0.39	2.6	2.4	1.9	0.8
M. p. of picrate, °C	170.5~172.5	1	$71 \sim 172$	150~151	150~151	192~	195
Amount of picrate, g.	0.7375	0	.6425	3.0	1.4	0.4	
Compound	3,4,5-C	ollidine	e	2, 3-Cycle 6-methyl	openteno- pyridine	Unidenti	fied
			TABLE XI.				
No. of fraction	1		2		3	4	
Amount, g.	8.4		5.0	:	3.4	5.4	
$n_{ m D}^{25}$	1.50	193	1.5094		1.5115	1.5201	
M. p.* of picrate, °C	124~	138	113~125	1:	24~150	178~17	9

^{*} After recrystallized twice from ethanol.

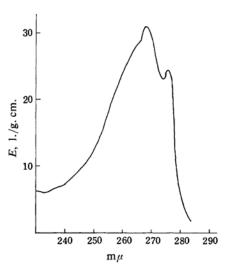


Fig. 1. 3,5-Lutidine in ethanol.

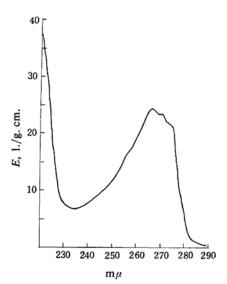


Fig. 2. 2,3,4,6-Tetramethylpyridine.

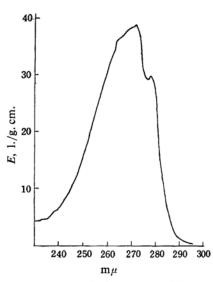


Fig. 3. 2,3-Cyclopentenopyridine.

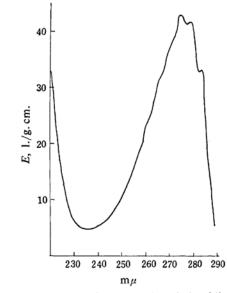


Fig. 4. 2,3-Cyclopenteno-6-methylpyridine.

1849

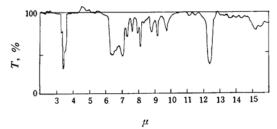


Fig. 5. 2, 3-Cyclopenteno-6-methylpyridine.

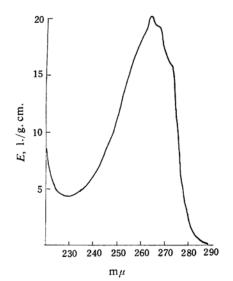


Fig. 6. 3,4,5-Collidine.

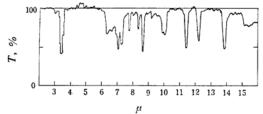


Fig. 7. 3,4,5-Collidine.

(1) Industrial grade collidine grade 1

Sample First drop 10% 50% 90% Dry point 173 180 165.7 171.7 178 Α 166.0 185 В 161.0 172 181

(2) Tertiary amines boiling at 200 and 210°C. A forerunning of quinoline (Fig. 8) was obtained when the crude quinoline was first extracted with sulfuric acid from the middle oil of coal tars and then fractionally distilled. Fractionating through a packed column 3 m. in height, this forerunning was separated into toluidine and xylidine fractions. Primary amines in these fractions were removed by acetylation, and the mixture of tertiary amines thus obtained was fractionally distilled as shown in Table VIII.

Separation of 3,5-Lutidine by Zinc Chloride.— Industrial grade collidine grade 1 (Sample A) (1250



Fig. 8

- $1 \quad \mathbf{T}_3 \quad (\mathbf{S}_1)$
- $2 X_3 (S_1)$
- 3 Forerunning of quinoline (S1)
- 4 X₃ (S₄)

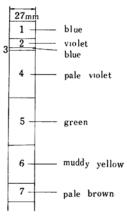


Fig. 9

Base 25g.
Benzene 91.5cc.
HCl 91.5cc.

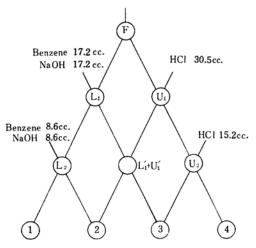


Fig. 10

cc.) was fractionated through a column 2 m. in height and packed with single turn helices, and a fraction boiling at 168~171°C (534cc.) was obtained. When a 50% aqueous solution of zinc chloride was stirred into this fraction, a white adduct was precipitated which was washed with benzene to remove free bases and then steam-distilled. The distillate, on treatment with an aqueous solution of picric acid, gave crude picrates, m. p. 240°C, in about a 4% yield based on the fraction. The crude picrate (49 g.) was refluxed with 700 cc. of ethanol, yielding 42 g. of pure picrate, which was decomposed to give pure 3,5-lutidine.

Separation by Urea-adduct.—Separation of 2,3, 6-Collidine.—One kilogram of Industrial grade collidine grade 1 (Sample B) was distilled into the following fractions:

Fraction up to 165°C 165~167°C 170~175°C Amount, g. 515 107 326

To the fraction boiling at 170~175°C (80 g.), a 50% aqueous solution of urea was added, and the resulting white adduct of m.p. 128~132°C was decomposed by steam distillation. A picrate (12 g.) melting at 147.4~148.4°C was obtained from the distillate. After being recrystallized once from ethanol, the picrate was decomposed, yielding 3.1 g. of pure 2,3,6-collidine.

2, 3, 4, 6-Tetramethylpyridine.—To 16 g. of the fraction (T_3) boiling at 200~201°C, 43 g. of a 50% aqueous solution of urea was added, and the resulting adduct was washed with ether and decomposed by steam distillation to give a base (4.5 g.) boiling at 198°C. The picrate of this base, after three recrystallizations from ethanol, melted at 122~122.5°C. The base was also confirmed by picrolonate and ultraviolet absorption spectrum.

2,3-Cyclopentenopyridine.—To 36 g. of No. 3 fraction of X_3 , a solution of urea (112 g.) in 50 cc. of water was added to form urea adduct, m. p. $124 \sim 132^{\circ}\text{C}$, which was decomposed, yielding 18 g. of basic material showing n_D^{25} 1.5200. This was next purified as picrate, and after a recrystallization from ethanol picrate of 2,3-cyclopentenopyridine (21 g.) which melted at $178 \sim 179^{\circ}\text{C}$ (uncorr.) was obtained. From the filtrate of urea adduct, 10 g. of the picrate of the base was recovered.

2,3-Cyclopenteno-6-methylpyridine.—To 5 g. of Nos. 8 and 9 fractions of S₄, 1 g. of a 60% aqueous solution of urea was added to yield an adduct from which 2,3-cyclopenteno-6-methylpyridine was recovered as picrate. The purified picrate did not show a melting point depression when admixed with an authentic sample. The results are shown in Table IX.

Similarly, from 50 g. of No. 9 fraction of S_4 , 19.8 g. of picrate was obtained. The combined picrates were decomposed, yielding 7.45 g. of the free base with n_0^{35} 1.5280. Bases which were recovered from the filtrate of the adduct boiled at 214°C and had n_0^{20} 1.5270, and N content 10.31%.

Chromatographic Separation.—Separation of 3,4, 5-Collidine and 2,3-Cyclopenteno-6-methylpyridine.—As Vignes used for the separation of pyridine, picolines and 2,6-lutidine⁶, a mixture of cupric chloride (2 parts), aluminum chloride (25 parts), glycerol (6 parts) and distilled water (2 parts) was

ground, dried at 50°C, and then used as an adsorbent in a chromatographic column. adsorbent (190 g.) was packed in a column as shown in Fig. 9. No. 7 fraction (10.02 g.) from X₃, in Table VIII, was placed on a column and developed with 280 cc. of ether. After 5 hr., development was complete, giving various zones as shown in Fig. 9. From each zone, bases were recovered by the addition of an alkali, followed by steam distillation. While examining these bases as picrates, the author found that the bases of Nos. 4 and 5 mainly consisted of 2,3-cyclopenteno-6-methylpyridine, and a base of Nos. 1 and 2 whose picrate melted at 171~ 172°C (uncorr.) was identified as 3,4,5-collidine (Table X). A comparison of the properties of the base with those of the synthetic sample used in the identification of coal tar bases¹⁰) is as follows: b.p. 210.3~210.8°C (reported 205~207°C), melting point of the picrate 173.6~174.3°C (reported 174°C), N content found 11.25% (Calcd. for C₈H₁₁N, 11.52%), molecular weight found 118 (Calcd. 121), and molar refractivity calculated from d_4^{35} 0.9552 and n_D^{35} 1.5115 38.1 (which is very close to the calculated values for collidines 38.6~38.8). The infrared spectrum in carbon disulfide and the ultraviolet spectrum in cyclohexane agreed with those of the literature cited. The base (0.4954 g.) was oxidized with 3.91 g. of potassium permanganate (used as a 2% aqueous solution) at 90°C over a period of 32 hr. Pyridine carboxylic acid was recovered as its copper salt; this was then decomposed by hydrogen sulfide to give the crude acid (0.0874 g.). After a recrystallization from water, pyridine carboxylic acid was obtained which melted with decomposition at 262.5°C (corr.).

Found: N, 5.8. Calcd. for $C_8H_5O_6N\cdot 3H_2O$: N, 5.3%.

Separation of 2,3,5-Collidine.—Separation of this base by picrate formation was reported in the literature, but the procedure of recrystallization was time-consuming. By using the chromatographic column described above, 2,3,5-collidine was separated easily. Bases of the fraction boiling at 183~ 190°C which remained in the solution after the solid urea adduct was removed were placed on the column and developed. A green zone was obtained, and from this zone was recovered a base whose picrate melted at 184~185°C and proved to be 2,3,5-collidine by the mixed melting point. Colors developed by other bases in this procedure are as follows: 3,5-lutidine (blue), 2,4,5-collidine (violet), 2,3,6-collidine (blue) and 2,3-cyclopentenopyridine (blue).

Separation of 2, 3-Cyclopentenopyridine by Countercurrent Extraction.—2, 3-Cyclopentenopyridine which was separated as urea adduct could also be separated by countercurrent extraction. The scheme of extraction, shown in Fig. 10, was similar to that described in the literature¹¹ using benzene and hydrochloric acid.

Using No. 2 fraction of S₁ as a feed, 2,3-cyclopentenopyridine was found to be concentrated in a fraction which was only with great difficulty soluble in the acid phase. The extraction was conducted

¹¹⁾ S. Tanaka et al., Japan Analyst (Bunseki Kagaku), 5, 455, 513 (1956).

December, 1961] 1851

as shown in Fig. 10; bases were distributed between benzene and hydrochloric acid by shaking for 5 min. in a separatory funnel. The upper benzene layer U_1 was separated, hydrochloric acid (1 N) was added, and the extraction was repeated, forming upper U_2 and lower layer U_1' . To L_1 , which was the lower layer of U_1 , benzene and 1 N sodium hydroxide were added, and extraction was conducted to give L_1' and L_2 . L_1' and U_1' were combined and distributed between themselves. The extraction was continued until the 4 fractions shown in Fig. 10 were obtained. The amount, the refrac-

tive index and the melting point of the picrate of the base recovered from each fraction are shown in Table XI.

The basicity of the base was expected to decrease gradually from No. 1 to No. 4. From fraction No. 4 the picrate of 2,3-cyclopentenopyridine (4.5 g.) was separated and identified by mixed melting point with an authentic sample.

Tokyo Laboratory of Research Center Yawata Chemical Industry Co. Chuo-ku, Tokyo